

Physics of muonium and muonium-antimuonium oscillations

Alexey A. Petrov Wayne State University

Table of Contents:

- Introduction: modern notations
 - flavor oscillation parameters: x and y
 - time-dependent and integrated probabilities
- EFT computations of oscillation parameters
 - mass difference
 - width difference
- What do we need from the Snowmass process?
- Conclusions and things to take home

R. Conlin and AAP arXiv: 2005.10276 [hep-ph]

LOI: https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5 RF0-TF0 TF6 Alexey Petrov-088.pdf

Muonium: just like hydrogen, but simpler!

- Muonium: a bound state of μ^+ and e^-
 - $(\mu^+\mu^-)$ bound state is a *true muonium*

Spin-0 (singlet) paramuonium

- Muonium lifetime $\tau_{M_u} = 2.2 \ \mu s$
 - main decay mode: $M_{\mu} \rightarrow e^+ e^- \bar{\nu}_{\mu} \nu_e$
 - annihilation: $M_{\mu}
 ightarrow ar{
 u}_{\mu}
 u_{e}$

Spin-1 (triplet) orthomuonium

- Muonium's been around since 1960's
 - used in chemistry
 - QED bound state physics, etc.
 - New Physics searches (oscillations)

Hughes (1960)

The masses of singlet and triplet are almost the same!

Muonium oscillations: just like $B^0ar{B}^0$ mixing, but simpler!

 \bigstar Lepton-flavor violating interactions can change $M_{\mu} \to \overline{M}_{\mu}$ Pontecorvo (1957)
Feinberg, Weinberg (1961)

- Such transition amplitudes are tiny in the Standard Model
 - ... but there are plenty of New Physics models where it can happen

- theory: compute transition amplitudes for ALL New Physics models!
- $-\;\;$ experiment: produce M_μ but see for decay products of \overline{M}_μ

Combined evolution = flavor oscillations

- ullet If there is an interaction that couples M_μ and \overline{M}_μ (both SM or NP)
 - combined time evolution: non-diagonal Hamiltonian!

$$i\frac{d}{dt} \begin{pmatrix} |M(t)\rangle \\ |\overline{M}(t)\rangle \end{pmatrix} = \left(m - i\frac{\Gamma}{2}\right) \begin{pmatrix} |M(t)\rangle \\ |\overline{M}(t)\rangle \end{pmatrix}$$

diagonalization: new mass eigenstates:

$$|M_{\mu_{1,2}}\rangle = \frac{1}{\sqrt{2}} \left[|M_{\mu}\rangle \mp |\overline{M}_{\mu}\rangle \right]$$

new mass eigenstates: mass and lifetime differences

These mass and width difference are observable quantities

Combined evolution = flavor oscillations

- Study oscillations via decays: amplitudes for $M_{\mu} o f$ and $\overline{M}_{\mu} o \overline{f}$
 - possibility of flavor oscillations ($M_{\mu}
 ightarrow \overline{M}_{\mu}
 ightarrow \overline{f}$)

$$\begin{split} |M(t)\rangle &= g_+(t) \, |M_\mu\rangle + g_-(t) \, \left|\overline{M}_\mu\right\rangle, \\ \left|\overline{M}(t)\right\rangle &= g_-(t) \, |M_\mu\rangle + g_+(t) \, \left|\overline{M}_\mu\right\rangle, \end{split} \qquad \text{with} \\ g_+(t) &= e^{-\Gamma_1 t/2} e^{-im_1 t} \left[1 + \frac{1}{8} \, (y - ix)^2 \, (\Gamma t)^2\right], \\ g_-(t) &= \frac{1}{2} e^{-\Gamma_1 t/2} e^{-im_1 t} \, (y - ix) \, (\Gamma t) \, . \end{split}$$

- time-dependent width: $\Gamma(M_{\mu} o \overline{f})(t) = rac{1}{2} N_f \left|A_f
 ight|^2 e^{-\Gamma t} \left(\Gamma t
 ight)^2 R_M(x,y)$
- oscillation probability: $P(M_{\mu} o \overline{M}_{\mu}) = rac{\Gamma(M_{\mu} o \overline{f})}{\Gamma(M_{\mu} o f)} = R_M(x,y) = rac{1}{2} \left(x^2 + y^2
 ight)$

Oscillation parameters: introduction

- Mixing parameters are related to off-diagonal matrix elements
 - heavy and light intermediate degrees of freedom

$$\left(m - \frac{i}{2}\Gamma\right)_{12} = \frac{1}{2M_M} \left\langle \overline{M}_{\mu} \left| \mathcal{H}_{\text{eff}} \right| M_{\mu} \right\rangle + \frac{1}{2M_M} \sum_{n} \frac{\left\langle \overline{M}_{\mu} \left| \mathcal{H}_{\text{eff}} \right| n \right\rangle \left\langle n \left| \mathcal{H}_{\text{eff}} \right| M_{\mu} \right\rangle}{M_M - E_n + i\epsilon}.$$

Local at scale $\mu=M_{\mu}$: only Δm lepton number change $\Delta L_{\mu}=2$

Bi-local at scale $\mu=M_{\mu}$: both Δm and $\Delta \Gamma$ lepton number changes: $(\Delta L_{\mu}=1)^2$ or $(\Delta L_{\mu}=0)(\Delta L_{\mu}=2)$

each term has contributions from different effective Lagrangians

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=0} + \mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=1} + \mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=2}$$

– ... all of which have a form $\mathcal{L}_{\text{eff}} = -\frac{1}{\Lambda^2} \sum_i c_i(\mu) Q_i$, with $\Lambda \sim \mathcal{O}(TeV)$

Mass difference = real (dispersive) part; width difference: imaginary (absorptive) part

Mass difference

Mass difference comes from the dispersive part

$$x = \frac{1}{2M_{M}\Gamma} \operatorname{Re} \left[2\langle \overline{M}_{\mu} | \mathcal{H}_{\text{eff}} | M_{\mu} \rangle + \langle \overline{M}_{\mu} | i \int d^{4}x \operatorname{T} \left[\mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) \right] | M_{\mu} \rangle \right]$$

- consider only $\Delta L_{\mu} = 2$ Lagrangian contributions (largest?)

$$\mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=2} = -rac{1}{\Lambda^2} \sum_i C_i^{\Delta L=2}(\mu) Q_i(\mu)$$

 leading order: all heavy New Physics models are encoded in (the Wilson coefficients of) the five dimension-6 operators

$$Q_{1} = (\overline{\mu}_{L}\gamma_{\alpha}e_{L})(\overline{\mu}_{L}\gamma^{\alpha}e_{L}), \quad Q_{2} = (\overline{\mu}_{R}\gamma_{\alpha}e_{R})(\overline{\mu}_{R}\gamma^{\alpha}e_{R}),$$

$$Q_{3} = (\overline{\mu}_{L}\gamma_{\alpha}e_{L})(\overline{\mu}_{R}\gamma^{\alpha}e_{R}), \quad Q_{4} = (\overline{\mu}_{L}e_{R})(\overline{\mu}_{L}e_{R}),$$

$$Q_{5} = (\overline{\mu}_{R}e_{L})(\overline{\mu}_{R}e_{L}).$$

need to compute matrix elements for both singlet and triplet states

Mass difference: matrix elements

- QED bound state: know leading order wave function!
 - spacial part is the same as in Hydrogen atom

$$\varphi(r) = \frac{1}{\sqrt{\pi a_{M_{\mu}}^3}} e^{-\frac{r}{a_{M_{\mu}}}}$$

can unambiguously compute decay constants and mixing MEs (QED)

$$\langle 0 | \overline{\mu} \gamma^{\alpha} \gamma^{5} e | M_{\mu}^{P} \rangle = i f_{P} p^{\alpha}, \quad \langle 0 | \overline{\mu} \gamma^{\alpha} e | M_{\mu}^{V} \rangle = f_{V} M_{M} \epsilon^{\alpha}(p),$$

$$\langle 0 | \overline{\mu} \sigma^{\alpha \beta} e | M_{\mu}^{V} \rangle = i f_{T} \left(\epsilon^{\alpha} p^{\beta} - \epsilon^{\beta} p^{\alpha} \right),$$

– in the non-relativistic limit all decay constants $f_P = f_V = f_T = f_M$

$$f_M^2 = 4rac{|arphi(0)|^2}{M_M}$$
 (QED version of Van Royen-Weisskopf)

NR matrix elements: "vacuum insertion" = direct computation

Mass difference: results

- Spin-singlet muonium state:
 - matrix elements:

$$\begin{split} \left< \bar{M}_{\mu}^{P} \right| Q_{1} \left| M_{\mu}^{P} \right> &= f_{M}^{2} M_{M}^{2}, \quad \left< \bar{M}_{\mu}^{P} \right| Q_{2} \left| M_{\mu}^{P} \right> &= f_{M}^{2} M_{M}^{2}, \\ \left< \bar{M}_{\mu}^{P} \right| Q_{3} \left| M_{\mu}^{P} \right> &= -\frac{3}{2} f_{M}^{2} M_{M}^{2}, \quad \left< \bar{M}_{\mu}^{P} \right| Q_{4} \left| M_{\mu}^{P} \right> &= -\frac{1}{4} f_{M}^{2} M_{M}^{2}, \\ \left< \bar{M}_{\mu}^{P} \right| Q_{5} \left| M_{\mu}^{P} \right> &= -\frac{1}{4} f_{M}^{2} M_{M}^{2}. \end{split}$$

$$x_P = \frac{4(m_{red}\alpha)^3}{\pi\Lambda^2\Gamma} \left[C_1^{\Delta L=2} + C_2^{\Delta L=2} - \frac{3}{2}C_3^{\Delta L=2} - \frac{1}{4} \left(C_4^{\Delta L=2} + C_5^{\Delta L=2} \right) \right]$$

- Spin-triplet muonium state:
 - matrix elements

$$\begin{split} \left< \bar{M}_{\mu}^{V} \right| Q_{1} \left| M_{\mu}^{V} \right> &= -3 f_{M}^{2} M_{M}^{2}, \quad \left< \bar{M}_{\mu}^{V} \right| Q_{2} \left| M_{\mu}^{V} \right> = -3 f_{M}^{2} M_{M}^{2}, \\ \left< \bar{M}_{\mu}^{V} \right| Q_{3} \left| M_{\mu}^{V} \right> &= -\frac{3}{2} f_{M}^{2} M_{M}^{2}, \quad \left< \bar{M}_{\mu}^{V} \right| Q_{4} \left| M_{\mu}^{V} \right> = -\frac{3}{4} f_{M}^{2} M_{M}^{2}, \\ \left< \bar{M}_{\mu}^{V} \right| Q_{5} \left| M_{\mu}^{V} \right> &= -\frac{3}{4} f_{M}^{2} M_{M}^{2}. \end{split}$$

$$\int x_V = -rac{12(m_{red}lpha)^3}{\pi\Lambda^2\Gamma} \left[C_1^{\Delta L=2} + C_2^{\Delta L=2} + rac{1}{2}C_3^{\Delta L=2} + rac{1}{4} \left(C_4^{\Delta L=2} + C_5^{\Delta L=2}
ight)
ight]$$

Experimental constraints on x result on experimental constraints on Wilson coefficients $C_k^{\Delta L=2}$ that encode all information about possible New Physics contributions

R. Conlin and AAP, arXiv: 2005.10276

Width difference

- Width difference comes from the absorptive part
 - light SM intermediate states ($e^+e^-, \gamma\gamma, \bar{\nu}\nu, etc$.)
 - $\bar{
 u}
 u$ state gives parametrically largest contribution

$$y = \frac{1}{2M_{M}\Gamma} \operatorname{Im} \left[\langle \overline{M}_{\mu} \left| i \int d^{4}x \operatorname{T} \left[\mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) \right] \right| M_{\mu} \rangle \right]$$

$$= \frac{1}{M_{M}\Gamma} \operatorname{Im} \left[\langle \overline{M}_{\mu} \left| i \int d^{4}x \operatorname{T} \left[\mathcal{H}_{\text{eff}}^{\Delta L_{\mu}=2}(x) \mathcal{H}_{\text{eff}}^{\Delta L_{\mu}=0}(0) \right] \right| M_{\mu} \rangle \right]$$

New Physics $\Delta L_u = 2$ contribution

$$\begin{split} \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=2} &= -\frac{1}{\Lambda^2} \sum_{i} C_{i}^{\Delta L=2}(\mu) Q_{i}(\mu) \\ Q_{6} &= \left(\overline{\mu}_{L} \gamma_{\alpha} e_{L} \right) \left(\overline{\nu_{\mu}}_{L} \gamma^{\alpha} \nu_{eL} \right), \\ Q_{7} &= \left(\overline{\mu}_{R} \gamma_{\alpha} e_{R} \right) \left(\overline{\nu_{\mu}}_{L} \gamma^{\alpha} \nu_{eL} \right) \end{split}$$

Standard Model $\Delta L_{\mu}=0$ contribution

$$\mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=2} = -\frac{1}{\Lambda^{2}} \sum_{i} C_{i}^{\Delta L=2}(\mu) Q_{i}(\mu) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_{F}}{\sqrt{2}} \left(\overline{\mu}_{L} \gamma_{\alpha} e_{L} \right) \left(\overline{\nu_{e}}_{L} \gamma^{\alpha} \nu_{\mu_{L}} \right)$$

Width difference: results

Spin-singlet muonium state:

$$y_P = \frac{G_F}{\sqrt{2}\Lambda^2} \frac{M_M^2}{\pi^2 \Gamma} (m_{red}\alpha)^3 \left(C_6^{\Delta L=2} - C_7^{\Delta L=2} \right)$$

• Spin-triplet muonium state:

$$y_V = -\frac{G_F}{\sqrt{2}\Lambda^2} \frac{M_M^2}{\pi^2 \Gamma} (m_{red}\alpha)^3 \left(5C_6^{\Delta L=2} + C_7^{\Delta L=2}\right)$$

• Note: y has the same $1/\Lambda^2$ suppression as the mass difference!

R. Conlin and AAP, arXiv: 2005.10276

Experimental results from 1999

- MACS (1999): observed $5.7 \times 10^{10}\,M_{\mu}$ atoms after 4 months of running
 - magnetic field is taken into account (suppression factor)

Interaction type	$2.8 \mu T$	0.1 T	100 T
SS	0.75	0.50	0.50
PP	1.0	0.9	0.50
$(V \pm A) \times (V \pm A)$ or			
$(S \pm P) \times (S \pm P)$	0.75	0.35	0.0
$(V \pm A) \times (V \mp A)$ or			
$(S \pm P) \times (S \mp P)$	0.95	0.78	0.67

L. Willmann, et al. PRL 82 (1999) 49

no oscillations have been observed

Experimental constraints

- We can now put constraints on the Wilson coefficients of effective operators from experimental data (assume single operator dominance)
 - presence of the magnetic field

$$P(M_{\mu} \to \overline{M}_{\mu}) \le 8.3 \times 10^{-11} / S_B(B_0)$$

no separation of spin states: average

$$P(M_{\mu} \to \overline{M}_{\mu})_{\exp} = \sum_{i=P,V} \frac{1}{2S_i + 1} P(M_{\mu}{}^i \to \overline{M}_{\mu}{}^i)$$

set Wilson coefficients to one, set constraints on the scale probed

Operator	Interaction type	$S_B(B_0)$ (from [9])	Constraints on the scale Λ , TeV
Q_1	$(V-A)\times(V-A)$	0.75	5.4
Q_2	$(V+A)\times(V+A)$	0.75	5.4
Q_3	$(V-A)\times(V+A)$	0.95	5.4
Q_4	$(S+P)\times(S+P)$	0.75	2.7
Q_5	$(S-P)\times(S-P)$	0.75	2.7
Q_6	$(V-A)\times(V-A)$	0.75	0.58×10^{-3}
Q_7	$(V+A)\times(V-A)$	0.95	0.38×10^{-3}

R. Conlin and AAP, arXiv: 2005.10276

What do we need from the Snowmass process?

- Collaboration with experimentalists:
 - decays: can $M_{\mu}^{P} \to \gamma \gamma$, $M_{\mu}^{V} \to e^{+}e^{-}$, $M_{\mu}^{V} \to \gamma \gamma \gamma$ be measured?
 - » can $M_{\mu} \to invisible$ (SM: $M_{\mu} \to \nu_e \bar{\nu}_{\mu}$) be measured directly?

Gninenko, Krasnikov, Matveev. Phys.Rev. D87 (2013) 015016

– oscillations: new experiment(s) to improve bounds?

CSNS FNAL

studios possible?

- » Are time-dependent oscillations studies possible?
- Collaboration with theorists:
 - matching NP models to EFT operators & complementarity with $\mu \to e \gamma$, $\mu \to 3e$, etc. and other collider measurements Crivellin et al Phys. Rev. D 99, 035004 (2019)
 - what models of NP can be <u>better</u> probed by muonium oscillations?

Conclusions and things to take home

- Muonium is the simplest atom (a bound state of μ^+ and e^-)
 - a heavy-light state that can exhibit flavor oscillations (like K, B, and D mesons)
 - oscillations probe New Physics without complications of QCD
- We discussed modern approach to phenomenology of muonium mixing
 - mass differences Δm (heavy NP intermediate states)
 - lifetime differences $\Delta\Gamma$ (SM intermediate state, NP in ΔL_{μ} operators)
- We used EFT to compute oscillation parameters
 - results can be matched to particular models of New Physics
 - found that both Δm and $\Delta \Gamma$ parametrically scale as $\mathcal{O}(\Lambda^{-2})$
- Last experimental data is from 1999! Need new data!
 - we already probe LHC energy domain!

1999: experimental setup and constraints

- Similar experimental set ups for different experiments
 - example: MACS at PSI
 - idea: form M_{μ} by scattering muon (μ^+) beam on SiO₂ target
- A couple of "little inconveniences":
 - \rightarrow how to tell f apart from \bar{f} ?

$$-M_{\mu} \rightarrow f \text{ decay: } M_{\mu} \rightarrow e^+e^-\bar{\nu}_{\mu}\nu_e$$

$$-\ \overline{M}_{\mu}
ightarrow ar{f} \ {
m decay:} \ \overline{M}_{\mu}
ightarrow e^+ e^- ar{
u}_e
u_{\mu}$$

- \bar{f} : fast e^- (~53 MeV), slow e^+ (13.5 eV)
- → oscillations happen in magnetic field
 - -~ ... which selects M_{μ} vs. \overline{M}_{μ}

Muonium-Antimuonium
Conversion Spectrometer (MACS)

L. Willmann, et al. PRL 82 (1999) 49

The most recent experimental data comes from 1999! Time is ripe for an update!

Effective Lagrangians and lifetime difference

• Effective Lagrangians for $\Delta L_{\mu}=0$, $\Delta L_{\mu}=1$, and $\Delta L_{\mu}=2$

$$\begin{split} \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} &= -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \\ \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=1} &= - \left(\frac{1}{\Lambda^2} \right) \!\! \sum_{f} \left[\left(C_{VR}^f \, \overline{\mu}_R \gamma^{\alpha} e_R + C_{VL}^f \, \overline{\mu}_L \gamma^{\alpha} e_L \right) \, \overline{f} \gamma_{\alpha} f \right. \\ &\quad + \left. \left(C_{AR}^f \, \overline{\mu}_R \gamma^{\alpha} e_R + C_{AL}^q \, \overline{\mu}_L \gamma^{\alpha} e_L \right) \, \overline{f} \gamma_{\alpha} \gamma_5 f \right. \\ &\quad + \left. m_e m_f G_F \left(C_{SR}^f \, \overline{\mu}_R e_L + C_{SL}^f \, \overline{\mu}_L e_R \right) \, \overline{f} f \right. \\ &\quad + \left. m_e m_f G_F \left(C_{PR}^f \, \overline{\mu}_R e_L + C_{PL}^f \, \overline{\mu}_L e_R \right) \, \overline{f} \gamma_5 f \right. \\ &\quad + \left. m_e m_f G_F \left(C_{TR}^f \, \overline{\mu}_R \sigma^{\alpha\beta} e_L + C_{TL}^f \, \overline{\mu}_L \sigma^{\alpha\beta} e_R \right) \, \overline{f} \sigma_{\alpha\beta} f + h.c. \, \right], \\ \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=2} &= \left. \frac{1}{\Lambda^2} \!\! \sum_i C_i^{\Delta L=2} (\mu) Q_i(\mu) \right. \\ Q_6 &= \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_{\mu}}_L \gamma^{\alpha} \nu_{eL} \right), \quad Q_7 = \left(\overline{\mu}_R \gamma_{\alpha} e_R \right) \left(\overline{\nu_{\mu}}_L \gamma^{\alpha} \nu_{eL} \right) \end{split}$$

• $\Delta\Gamma$: naively $\mathcal{O}(\Lambda^{-4})$ from double $\Delta L_{\mu}=1$ insertion! But not always...

Effective Lagrangians and particular models

- Effective Lagrangian approach encompasses all models
 - lets look at an example of a model with a doubly charged Higgs Δ^{--}
 - this is common for the left-right models, etc.

$$\mathcal{L}_R = g_{\ell\ell} \overline{\ell}_R \ell^c \Delta + H.c.,$$

- integrate out Δ^{--} to get

$$\mathcal{H}_{\Delta} = \frac{g_{ee}g_{\mu\mu}}{2M_{\Delta}^{2}} \left(\overline{\mu}_{R} \gamma_{\alpha} e_{R} \right) \left(\overline{\mu}_{R} \gamma^{\alpha} e_{R} \right) + H.c.,$$

– match to $\mathscr{L}_{\mathrm{eff}}^{\Delta L=2}$ to see that $M_{\Delta}=\Lambda$ and

$$C_2^{\Delta L=2} = g_{ee}g_{\mu\mu}/2$$